Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.351
Filtrar
1.
Commun Biol ; 7(1): 424, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589507

RESUMO

The cellular and molecular mechanisms governing sexual reproduction are conserved across eukaryotes. Nevertheless, hybridization can disrupt these mechanisms, leading to asexual reproduction, often accompanied by polyploidy. In this study, we investigate how ploidy level and ratio of parental genomes in hybrids affect their reproductive mode. We analyze the gametogenesis of sexual species and their diploid and triploid hybrids from the freshwater fish family Cobitidae, using newly developed cytogenetic markers. We find that diploid hybrid females possess oogonia and oocytes with original (diploid) and duplicated (tetraploid) ploidy. Diploid oocytes cannot progress beyond pachytene due to aberrant pairing. However, tetraploid oocytes, which emerge after premeiotic genome endoreplication, exhibit normal pairing and result in diploid gametes. Triploid hybrid females possess diploid, triploid, and haploid oogonia and oocytes. Triploid and haploid oocytes cannot progress beyond pachytene checkpoint due to aberrant chromosome pairing, while diploid oocytes have normal pairing in meiosis, resulting in haploid gametes. Diploid oocytes emerge after premeiotic elimination of a single-copied genome. Triploid hybrid males are sterile due to aberrant pairing and the failure of chromosomal segregation during meiotic divisions. Thus, changes in ploidy and genome dosage may lead to cyclical alteration of gametogenic pathways in hybrids.


Assuntos
Cipriniformes , Triploidia , Animais , Feminino , Masculino , Tetraploidia , Gametogênese , Haploidia , Cipriniformes/genética
2.
Plant Cell Rep ; 43(5): 119, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632145

RESUMO

KEY MESSAGE: Mutants lacking functional HYD2 homoeologs showed improved seedling growth, but comparable or increased susceptibility to salt stress in tillering plants, suggesting a developmentally restricted role of HYD2 in salt response. Salinity stress threatens global food security by reducing the yield of staple crops such as wheat (Triticum ssp.). Understanding how wheat responds to salinity stress is crucial for developing climate resilient varieties. In this study, we examined the interplay between carotenoid metabolism and the response to salt (NaCl) stress, a specific form of salinity stress, in tetraploid wheat plants with mutations in carotenoid ß-hydroxylase 1 (HYD1) and HYD2. Our investigation encompassed both the vulnerable seedling stage and the more developed tillering stage of wheat plant growth. Mutant combinations lacking functional HYD2 homoeologs, including hyd-A2 hyd-B2, hyd-A1 hyd-A2 hyd-B2, hyd-B1 hyd-A2 hyd-B2, and hyd-A1 hyd-B1 hyd-A2 hyd-B2, had longer first true leaves and slightly enhanced root growth during germination under salt stress compared to the segregate wild-type (control) plants. Interestingly, these mutant seedlings also showed decreased levels of neoxanthin and violaxanthin (xanthophylls derived from ß-carotene) and an increase in ß-carotene in roots. However, tillering hyd mutant and segregate wild-type plants generally did not differ in their height, tiller count, and biomass production under acute or prolonged salt stress, except for decreases in these parameters observed in the hyd-A1 hyd-B1 hyd-A2 hyd-B2 mutant that indicate its heightened susceptibility to salt stress. Taken together, these findings suggest a significant, yet developmentally restricted role of HYD2 homoeologs in salt-stress response in tetraploid wheat. They also show that hyd-A2 hyd-B2 mutant plants, previously demonstrated for possessing enriched nutritional (ß-carotene) content, maintain an unimpaired ability to withstand salt stress.


Assuntos
Anodontia , Plântula , beta Caroteno , Plântula/metabolismo , beta Caroteno/metabolismo , Triticum/genética , Tetraploidia , Carotenoides/metabolismo , Estresse Salino , Salinidade
3.
Am J Bot ; 111(3): e16305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517199

RESUMO

PREMISE: The western North American fern genus Pentagramma (Pteridaceae) is characterized by complex patterns of ploidy variation, an understanding of which is critical to comprehending both the evolutionary processes within the genus and its current diversity. METHODS: We undertook a cytogeographic study across the range of the genus, using a combination of chromosome counts and flow cytometry to infer ploidy level. Bioclimatic variables and elevation were used to compare niches. RESULTS: We found that diploids and tetraploids are common and widespread, and triploids are rare and sporadic; in contrast with genome size inferences in earlier studies, no hexaploids were found. Diploids and tetraploids show different geographic ranges: only tetraploids were found in the northernmost portion of the range (Washington, Oregon, and British Columbia) and only diploids were found in the Sierra Nevada of California. Diploid, triploid, and tetraploid cytotypes were found to co-occur in relatively few localities: in the southern (San Diego County, California) and desert Southwest (Arizona) parts of the range, and along the Pacific Coast of California. CONCLUSIONS: Tetraploids occupy a wider bioclimatic niche than diploids both within P. triangularis and at the genus-wide scale. It is unknown whether the wider niche of tetraploids is due to their expansion upon the diploid niche, if diploids have contracted their niche due to competition or changing abiotic conditions, or if this wider niche occupancy is due to multiple origins of tetraploids.


Assuntos
Gleiquênias , Pteridaceae , Diploide , Tetraploidia , Poliploidia
4.
Genes (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540363

RESUMO

A-genome Arachis species (AA; 2n = 2x = 20) are commonly used as secondary germplasm sources in cultivated peanut breeding, Arachis hypogaea L. (AABB; 2n = 4x = 40), for the introgression of various biotic and abiotic stress resistance genes. Genome doubling is critical to overcoming the hybridization barrier of infertility that arises from ploidy-level differences between wild germplasm and cultivated peanuts. To develop improved genome doubling methods, four trials of various concentrations of the mitotic inhibitor treatments colchicine, oryzalin, and trifluralin were tested on the seedlings and seeds of three A-genome species, A. cardenasii, A. correntina, and A. diogoi. A total of 494 seeds/seedlings were treated in the present four trials, with trials 1 to 3 including different concentrations of the three chemical treatments on seedlings, and trial 4 focusing on the treatment period of 5 mM colchicine solution treatment of seeds. A small number of tetraploids were produced from the colchicine and oryzalin gel treatments of seedlings, but all these tetraploid seedlings reverted to diploid or mixoploid states within six months of treatment. In contrast, the 6-h colchicine solution treatment of seeds showed the highest tetraploid conversion rate (6-13% of total treated seeds or 25-40% of surviving seedlings), and the tetraploid plants were repeatedly tested as stable tetraploids. In addition, visibly and statistically larger leaves and flowers were produced by the tetraploid versions of these three species compared to their diploid versions. As a result, stable tetraploid plants of each A-genome species were produced, and a 5 mM colchicine seed treatment is recommended for A-genome and related wild Arachis species genome doubling.


Assuntos
Arachis , Dinitrobenzenos , Fabaceae , Sulfanilamidas , Arachis/genética , Tetraploidia , Genoma de Planta , Poliploidia , Melhoramento Vegetal , Fabaceae/genética , Colchicina/farmacologia
5.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542459

RESUMO

The lipoxygenases (LOXs) are non-heme iron-containing dioxygenases that play an important role in plant growth and defense responses. There is scarce knowledge regarding the LOX gene family members and their involvement in biotic and abiotic stresses in potato. In this study, a total of 17 gene family members (StLOXs) in potato were identified and clustered into three subfamilies: 9-LOX type I, 13-LOX type I, and 13-LOX type II, with eleven, one, and five members in each subfamily based on phylogenetic analysis. By exploiting the RNA-seq data in the Potato Genome Sequencing Consortium (PGSC) database, the tissue-specific expressed and stress-responsive StLOX genes in double-monoploid (DM) potato were obtained. Furthermore, six candidate StLOX genes that might participate in drought and salt response were determined via qPCR analysis in tetraploid potato cultivars under NaCl and PEG treatment. Finally, the involvement in salt stress response of two StLOX genes, which were significantly up-regulated in both DM and tetraploid potato under NaCl and PEG treatment, was confirmed via heterologous expression in yeast under salt treatment. Our comprehensive analysis of the StLOX family provides a theoretical basis for the potential biological functions of StLOXs in the adaptation mechanisms of potato to stress conditions.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Tetraploidia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
6.
Nat Genet ; 56(4): 710-720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491323

RESUMO

Polyploidy (genome duplication) is a pivotal force in evolution. However, the interactions between parental genomes in a polyploid nucleus, frequently involving subgenome dominance, are poorly understood. Here we showcase analyses of a bamboo system (Poaceae: Bambusoideae) comprising a series of lineages from diploid (herbaceous) to tetraploid and hexaploid (woody), with 11 chromosome-level de novo genome assemblies and 476 transcriptome samples. We find that woody bamboo subgenomes exhibit stunning karyotype stability, with parallel subgenome dominance in the two tetraploid clades and a gradual shift of dominance in the hexaploid clade. Allopolyploidization and subgenome dominance have shaped the evolution of tree-like lignified culms, rapid growth and synchronous flowering characteristic of woody bamboos as large grasses. Our work provides insights into genome dominance in a remarkable polyploid system, including its dependence on genomic context and its ability to switch which subgenomes are dominant over evolutionary time.


Assuntos
Poaceae , Tetraploidia , Poaceae/genética , Poliploidia , Genômica , Transcriptoma/genética , Genoma de Planta/genética , Evolução Molecular
7.
Genome Biol ; 25(1): 63, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439049

RESUMO

BACKGROUND: Centromeres are critical for maintaining genomic stability in eukaryotes, and their turnover shapes genome architectures and drives karyotype evolution. However, the co-evolution of centromeres from different species in allopolyploids over millions of years remains largely unknown. RESULTS: Here, we generate three near-complete genome assemblies, a tetraploid Brachypodium hybridum and its two diploid ancestors, Brachypodium distachyon and Brachypodium stacei. We detect high degrees of sequence, structural, and epigenetic variations of centromeres at base-pair resolution between closely related Brachypodium genomes, indicating the appearance and accumulation of species-specific centromere repeats from a common origin during evolution. We also find that centromere homogenization is accompanied by local satellite repeats bursting and retrotransposon purging, and the frequency of retrotransposon invasions drives the degree of interspecies centromere diversification. We further investigate the dynamics of centromeres during alloploidization process, and find that dramatic genetics and epigenetics architecture variations are associated with the turnover of centromeres between homologous chromosomal pairs from diploid to tetraploid. Additionally, our pangenomes analysis reveals the ongoing variations of satellite repeats and stable evolutionary homeostasis within centromeres among individuals of each Brachypodium genome with different polyploidy levels. CONCLUSIONS: Our results provide unprecedented information on the genomic, epigenomic, and functional diversity of highly repetitive DNA between closely related species and their allopolyploid genomes at both coarse and fine scale.


Assuntos
Brachypodium , Diploide , Humanos , Tetraploidia , Brachypodium/genética , Retroelementos , Centrômero/genética
8.
Sci Rep ; 14(1): 5476, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443466

RESUMO

Climate changes leading to increasingly longer seasonal drought periods in large parts of the world increase the necessity for breeding drought-tolerant crops. Cultivated potato (Solanum tuberosum), the third most important vegetable crop worldwide, is regarded as drought-sensitive due to its shallow root architecture. Two German tetraploid potato cultivars differing in drought tolerance and their F1-progeny were evaluated under various drought scenarios. Bulked segregant analyses were combined with whole-genome sequencing (BSA-Seq) using contrasting bulks of drought-tolerant and drought-sensitive F1-clones. Applying QTLseqr, 15 QTLs comprising 588,983 single nucleotide polymorphisms (SNPs) in 2325 genes associated with drought stress tolerance were identified. SeqSNP analyses in an association panel of 34 mostly starch potato varieties using 1-8 SNPs for each of 188 selected genes narrowed the number of candidate genes down to 10. In addition, ent-kaurene synthase B was the only gene present under QTL 10. Eight of the identified genes (StABP1, StBRI1, StKS, StLEA, StPKSP1, StPKSP2, StYAB5, and StZOG1) address plant development, the other three genes (StFATA, StHGD and StSYP) contribute to plant protection under drought stress. Allelic variation in these genes might be explored in future breeding for drought-tolerant potato varieties.


Assuntos
Resistência à Seca , Solanum tuberosum , Humanos , Solanum tuberosum/genética , Tetraploidia , Melhoramento Vegetal , Secas
9.
Sci Rep ; 14(1): 5608, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454146

RESUMO

Essential oil from Thymus vulgaris L. has valuable therapeutic potential that is highly desired in pharmaceutical, food, and cosmetic industries. Considering these advantages and the rising market demand, induced polyploids were obtained using oryzalin to enhance essential oil yield. However, their therapeutic values were unexplored. So, this study aims to assess the phytochemical content, and antimicrobial, antioxidant, and anti-inflammatory activities of tetraploid and diploid thyme essential oils. Induced tetraploids had 41.11% higher essential oil yield with enhanced thymol and γ-terpinene content than diploid. Tetraploids exhibited higher antibacterial activity against all tested microorganisms. Similarly, in DPPH radical scavenging assay tetraploid essential oil was more potent with half-maximal inhibitory doses (IC50) of 180.03 µg/mL (40.05 µg TE/mg) than diploid with IC50 > 512 µg/mL (12.68 µg TE/mg). Tetraploids exhibited more effective inhibition of in vitro catalytic activity of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) than diploids at 50 µg/mL concentration. Furthermore, molecular docking revealed higher binding affinity of thymol and γ-terpinene towards tested protein receptors, which explained enhanced bioactivity of tetraploid essential oil. In conclusion, these results suggest that synthetic polyploidization using oryzalin could effectively enhance the quality and quantity of secondary metabolites and can develop more efficient essential oil-based commercial products using this induced genotype.


Assuntos
Monoterpenos Cicloexânicos , Dinitrobenzenos , Óleos Voláteis , Óleos de Plantas , Sulfanilamidas , Thymus (Planta) , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Timol/farmacologia , Thymus (Planta)/química , Tetraploidia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia
10.
Mol Genet Genomics ; 299(1): 30, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472439

RESUMO

Fusarium wilt, caused by the soilborne fungus Fusarium oxysporum f. sp. vasinfectum (FOV), is a devastating disease affecting cotton (Gossypium spp.) worldwide. Understanding the genetic basis of resistance in diploid cotton and successfully transferring the resistance to tetraploid Upland cotton (G. hirsutum) are crucial for developing resistant cotton cultivars. Although numerous studies have been conducted to investigate the genetic basis of Fusarium wilt in tetraploid cotton, little research has been conducted on diploid species. In this study, an association mapping panel consisting of 246 accessions of G. arboreum, was used to identify chromosomal regions for FOV race 4 (FOV4) resistance based on foliar disease severity ratings in four greenhouse tests. Through a genome-wide association study (GWAS) based on 7,009 single nucleotide polymorphic (SNP) markers, 24 FOV4 resistance QTLs, including three major QTLs on chromosomes A04, A06, and A11, were detected. A validation panel consisting of 97 diploid cotton accessions was employed, confirming the presence of several QTLs. Evaluation of an introgressed BC2F7 population derived from G. hirsutum/G. aridum/G. arboreum showed significant differences in disease incidence and mortality rate, as compared to susceptible and resistant controls, suggesting that the resistance in G. arboreum and/or G. aridum was transferred into Upland cotton for the first time. The identification of novel major resistance QTLs, along with the transfer of resistance from the diploid species, expands our understanding of the genomic regions involved in conferring resistance to FOV4 and contributes to the development of resilient Upland cotton cultivars.


Assuntos
Fusarium , Gossypium , Gossypium/genética , Fusarium/genética , Estudo de Associação Genômica Ampla , Tetraploidia , Diploide , Doenças das Plantas/genética
11.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421617

RESUMO

Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.


Assuntos
Triploidia , Peixe-Zebra , Masculino , Animais , Feminino , Tetraploidia , Sementes , Poliploidia , Ploidias
12.
J Sci Food Agric ; 104(7): 4400-4410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38318752

RESUMO

BACKGROUND: Wild relatives of wheat (Triticum spp.) harbor beneficial alleles for potential improvement and de novo domestication of selected genotypes with advantageous traits. We analyzed the nutrient composition in wild diploid and tetraploid wheats and their domesticated diploid, tetraploid and hexaploid relatives under field conditions in Germany and compared them with modern Triticum aestivum and Triticum durum cultivars. Grain iron (Fe) and zinc (Zn) concentrations, phytate:mineral molar ratios, grain protein content (GPC) and antioxidant activity were analyzed across 125 genotypes. RESULTS: Grain Fe and Zn concentrations in wild wheats were 72 mg kg-1 and 59 mg kg-1, respectively, with improved bioavailability indicated by Phytate:Fe and Phytate:Zn molar ratios (11.7 and 16.9, respectively) and GPC (231 g kg-1). By comparison, grain Fe and Zn concentrations in landrace taxa were 54 mg kg-1 and 55 mg kg-1, respectively, with lower Phytate:Fe and Phytate:Zn molar ratios (15.1 and 17.5, respectively) and GPC (178 g kg-1). Average grain Fe accumulation in Triticum araraticum was 73 mg kg-1, reaching 116 mg kg-1, with high Fe bioavailability (Phyt:Fe: 11.7; minimum: 7.2). Wild wheats, landraces and modern cultivars showed no differences in antioxidant activity. Triticum zhukovskyi stood out with high grain micronutrient concentrations and favorable molar ratios. It was also the only taxon with elevated antioxidant activity. CONCLUSION: Our results indicate alteration of grain quality during domestication. T. araraticum has promising genotypes with advantageous grain quality characteristics that could be selected for de novo domestication. Favorable nutritional traits in the GGAA wheat lineage (T. araraticum and T. zhukovskyi) hold promise for improving grain quality traits. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Tetraploidia , Triticum , Triticum/química , Antioxidantes/metabolismo , Ácido Fítico/metabolismo , Domesticação , Grão Comestível/química , Zinco/metabolismo
13.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396682

RESUMO

Leukemic stem cells (LSCs) possess similar characteristics to normal hematopoietic stem cells, including self-renewal capacity, quiescence, ability to initiate leukemia, and drug resistance. These cells play a significant role in leukemia relapse, persisting even after apparent remission. LSCs were first described in 1994 by Lapidot et al. Although they have been extensively studied in acute leukemia, more LSC research is still needed in chronic lymphocytic leukemia (CLL) to understand if reduced apoptosis in mature cells should still be considered as the major cause of this disease. Here, we provide new evidence suggesting the existence of stem-like cell populations in CLL, which may help to understand the disease as well as to develop effective treatments. In this study, we identified a potential leukemic stem cell subpopulation using the tetraploid CLL cell line I83. This subpopulation is characterized by diploid cells that were capable of generating the I83 tetraploid population. Furthermore, we adapted a novel flow cytometry analysis protocol to detect CLL subpopulations with stem cell properties in peripheral blood samples and primary cultures from CLL patients. These cells were identified by their co-expression of CD19 and CD5, characteristic markers of CLL cells. As previously described, increased alkaline phosphatase (ALP) activity is indicative of stemness and pluripotency. Moreover, we used this method to investigate the potential synergistic effect of curcumin in combination with fludarabine and ibrutinib to deplete this subpopulation. Our results confirmed the effectiveness of this ALP-based analysis protocol in detecting and monitoring leukemic stem-like cells in CLL. This analysis also identified limitations in eradicating these populations using in vitro testing. Furthermore, our findings demonstrated that curcumin significantly enhanced the effects of fludarabine and ibrutinib on the leukemic fraction, exhibiting synergistic effects (combination drug index, CDI 0.97 and 0.37, respectively). Our results lend support to the existence of potential stem-like populations in CLL cell lines, and to the idea that curcumin could serve as an effective adjuvant in therapies aimed at eliminating these populations and improving treatment efficacy.


Assuntos
Adenina/análogos & derivados , Curcumina , Leucemia Linfocítica Crônica de Células B , Piperidinas , Vidarabina/análogos & derivados , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Tetraploidia
14.
Genes (Basel) ; 15(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397240

RESUMO

Rapid climate changes, with higher warming rates during winter and spring seasons, dramatically affect the vernalization requirements, one of the most critical processes for the induction of wheat reproductive growth, with severe consequences on flowering time, grain filling, and grain yield. Specifically, the Vrn genes play a major role in the transition from vegetative to reproductive growth in wheat. Recent advances in wheat genomics have significantly improved the understanding of the molecular mechanisms of Vrn genes (Vrn-1, Vrn-2, Vrn-3, and Vrn-4), unveiling a diverse array of natural allelic variations. In this review, we have examined the current knowledge of Vrn genes from a functional and structural point of view, considering the studies conducted on Vrn alleles at different ploidy levels (diploid, tetraploid, and hexaploid). The molecular characterization of Vrn-1 alleles has been a focal point, revealing a diverse array of allelic forms with implications for flowering time. We have highlighted the structural complexity of the different allelic forms and the problems linked to the different nomenclature of some Vrn alleles. Addressing these issues will be crucial for harmonizing research efforts and enhancing our understanding of Vrn gene function and evolution. The increasing availability of genome and transcriptome sequences, along with the improvements in bioinformatics and computational biology, offers a versatile range of possibilities for enriching genomic regions surrounding the target sites of Vrn genes, paving the way for innovative approaches to manipulate flowering time and improve wheat productivity.


Assuntos
Triticum , 60485 , Triticum/genética , Alelos , Tetraploidia , Fenótipo
15.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340334

RESUMO

Fishes of the genus Carassius are useful experimental vertebrate models for the study of evolutionary biology and cytogenetics. Carassius demonstrates diverse biological characteristics, such as variation in ploidy levels and chromosome numbers, and presence of microchromosomes. Those Carassius polyploids with ≥150 chromosomes have microchromosomes, but the origin of microchromosomes, especially in European populations, is unknown. We used cytogenetics to study evolution of tandem repeats (U1 and U2 small nuclear DNAs and H3 histone) and microchromosomes in Carassius from the Czech Republic. We tested the hypotheses whether the number of tandem repeats was affected by polyploidization or divergence between species and what mechanism drives evolution of microchromosomes. Tandem repeats were found in tetraploid and hexaploid Carassius gibelio, and tetraploid Carassius auratus and Carassius carassius in conserved numbers, with the exception of U1 small nuclear DNA in C. auratus. This conservation indicates reduction and/or loss in the number of copies per locus in hexaploids and may have occurred by divergence rather than polyploidization. To study the evolution of microchromosomes, we used the whole microchromosome painting probe from hexaploid C. gibelio and hybridized it to tetraploid and hexaploid C. gibelio, and tetraploid C. auratus and C. carassius. Our results revealed variation in the number of microchromosomes in hexaploids and indicated that the evolution of the Carassius karyotype is governed by macrochromosome fissions followed by segmental duplication in pericentromeric areas. These are potential mechanisms responsible for the presence of microchromosomes in Carassius hexaploids. Differential efficacy of one or both of these mechanisms in different tetraploids could ensure variability in chromosome number in polyploids in general.


Assuntos
Cyprinidae , Duplicações Segmentares Genômicas , Animais , Tetraploidia , Análise Citogenética , Sequências de Repetição em Tandem , Poliploidia
16.
Plant Physiol Biochem ; 208: 108441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377887

RESUMO

The economically adaptable mulberry (Morus alba L.) has a long history of grafting in China, yet the physiological mechanisms and advantages in drought tolerance remain unexplored. In our study, we investigated the responses of self-rooted 2X (diploid), 3X (triploid), and 4X (tetraploid) plants, as well as polyploid plants grafted onto diploid seedling rootstocks (2X/2X, 3X/2X, and 4X/2X) under drought stress. We found that self-rooted diploid plants exhibited the most severe phenotypic damage, lowest water retention, photosynthetic capacity, and the least effective osmotic stress adjustment compared to tetraploid and triploid plants. However, grafted diploid and triploid plants showed effective mitigation of drought-induced damage, with higher relative water content and improved soil water retention. Grafted plants also improved the photosystem response to drought stress through elevated photosynthetic potential, closed stomatal aperture, and faster recovery of chlorophyll biosynthesis in the leaves. Additionally, grafted plants altered osmotic protective compound levels, including starch, soluble sugar, and proline content, thereby enhancing drought resistance. Absolute quantification PCR indicated that the expression levels of proline synthesis-related genes in grafted plants were not influenced after drought stress, whereas they were significantly increased in self-rooted plants. Consequently, our findings support that self-rooted triploid and tetraploid mulberries exhibited superior drought resistance compared to diploid plants. Moreover, grafting onto seedling rootstocks enhanced tolerance against drought stress in diploid and triploid mulberry, but not in tetraploid. Our study provides valuable insights for a comprehensive analysis of physiological effects in response to drought stress between stem-roots and seedling rootstocks.


Assuntos
Morus , Plântula , Plântula/metabolismo , Morus/genética , Tetraploidia , Secas , Triploidia , Água/fisiologia , Prolina/metabolismo
17.
New Phytol ; 242(2): 507-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362849

RESUMO

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.


Assuntos
Metilação de DNA , Tetraploidia , Metilação de DNA/genética , Triticum/genética , Epigênese Genética , Transcriptoma , Regulação da Expressão Gênica de Plantas
18.
Plant Sci ; 342: 112051, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417717

RESUMO

Salicylic acid (SA) is a key phyto-hormone that is essential for plant immunity. SARD1 (SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1), a member of the CBP60 (CALMODULIN-BINDING PROTEIN60) gene family, is one of the major transcription factors regulating the expression of the genes in SA biosynthesis. SARD1 has been extensively studied in model plant Arabidopsis. However, the function of SARD1 homologues in SA biosynthesis and immune responses have rarely been investigated in other plant species. In this study, the CRISPR/CAS9 (Clustered Regularly Interspersed Short Palindromic Repeats/CAS9) technology was used in creating transgenic tobacco mutant lines with 6-8 alleles of four NtSARD1 homologous genes (NtSARD1a/1b/1c/1d) knocked out. No significant difference in morphological phenotype was observed between the transgenic knockout lines and the wild type tobacco plants, indicating that knocking out NtSARD1s does not affect the growth and development in tobacco. However, knocking out or partially knocking out of NtSARD1a/b/c/d resulted in a significantly reduced expression of NtICS1, the key gene in SA biosynthesis pathway, and thus the subsequently decreased SA/SAG accumulations in response to Pst DC3000 (Pseudomonas syrangae pv.tomato DC3000) infection, indicating a key role of NtSARD1 genes in SA biosynthesis in tobacco. As a consequence of reduced SA/SAG accumulation, the Pst DC3000-induced expression of NtPR genes as well as the resistance to Pst DC3000 were both significantly reduced in these knockout lines compared with the wild type tobacco plants. Interestingly, the reductions in the SA/SAG level, NtPR gene induction and Pst DC3000 resistance were positively correlated with the number of alleles being knocked out. Furthermore, LUC reporter gene driven by the promoter of NtICS1 containing two G(A/T)AATT(T/G) motifs could be activated by NtSARD1a, suggesting that NtSARD1a could bind to the core G(A/T)AATT(T/G) motifs and thus activate the expression of LUC reporter. Taken together, our results demonstrated that the NtSARD1 proteins play essential roles in SA biosynthesis and immune responses in tobacco. Our results also demonstrated that the CRISPR/CAS9 technology can overcome gene redundancy and is a powerful tool to study gene functions in polyploid plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Salicílico/metabolismo , Tabaco/genética , Sistemas CRISPR-Cas , Tetraploidia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Doenças das Plantas , Pseudomonas syringae/fisiologia , Regulação da Expressão Gênica de Plantas
19.
Science ; 383(6686): eadh0755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422152

RESUMO

Genome duplication (generating polyploids) is an engine of novelty in eukaryotic evolution and a promising crop improvement tool. Yet newly formed polyploids often have low fertility. Here we report that a severe fertility-compromising defect in pollen tube tip growth arises in new polyploids of Arabidopsis arenosa. Pollen tubes of newly polyploid A. arenosa grow slowly, have aberrant anatomy and disrupted physiology, often burst prematurely, and have altered gene expression. These phenotypes recover in evolved polyploids. We also show that gametophytic (pollen tube) genotypes of two tip-growth genes under selection in natural tetraploid A. arenosa are strongly associated with pollen tube performance in the tetraploid. Our work establishes pollen tube tip growth as an important fertility challenge for neo-polyploid plants and provides insights into a naturally evolved multigenic solution.


Assuntos
Arabidopsis , Tubo Polínico , Polinização , Poliploidia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tetraploidia , Duplicação Gênica , Polinização/genética , Polinização/fisiologia
20.
Planta ; 259(3): 66, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332379

RESUMO

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Assuntos
Ácido Abscísico , Robinia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Robinia/genética , Tetraploidia , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Piruvatos/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...